Приложение 1 к РПД
Избранные главы геометрии
44.03.05 Педагогическое образование
(с двумя профилями подготовки)
направленность (профили)
Математика. Информатика
Форма обучения — очная
Год набора — 2021

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

1. Общие сведения

1.	Кафедра	Математики, физики и информационных технологий
2.	Направление подготовки	44.03.05 Педагогическое образование (с двумя профилями подготовки)
3.	Направленность (профили)	Математика. Информатика
4.	Дисциплина (модуль)	Б1.В.ДВ.05.02 Избранные главы геометрии
5.	Форма обучения	очная
6.	Год набора	2021

2. Перечень компетенций

УК-1: Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ПК-1: Способен реализовывать программы учебных дисциплин в рамках основной общеобразовательной программы в соответствии с требованиями федеральных государственных образовательных стандартов

3. Критерии и показатели оценивания компетенций на различных этапах их формирования

Этап формирования			Формал монерода		
компетенции (разделы, темы дисциплины)	Формируемая компетенция	Критерии и показатели оценивания компетенций Знать: Уметь:		Владеть:	Формы контроля сформированности компетенций
Решение нестандартных задач планиметрии. Треугольники		методы работы с информационными	 находить и критически анализировать информацию, необходимую для решения поставленной задачи; рассматривать различные варианты решения задачи, оценивая их достоинства и недостатки; грамотно, логично, аргументированно 	 способами анализа задачи, выделением ее базовых составляющих методами 	
Дополнительные соотношения между элементами фигур		информационными источниками; – понятия анализа и синтеза	формировать собственные суждения и оценки; отличать факты от мнений, интерпретаций,	определения, интерпретации и ранжирования информации, требуемой для решения поставленной задачи - способами оценки практических последствий возможных решений задачи основными методами решения геометрических задач; - приемами обучения школьников различным способам решения геометрических задач	
Задачи по стереометрии. Методы решения задач стереометрии	УК-1 ПК-1	информации; - основы критического анализа; - основные понятия, формулы, теоремы и утверждения,	оценок и т.д. в рассуждениях других участников деятельности; - логически мыслить и оперировать с абстрактными объектами; - строить логические цепи рассуждений, делать выводы при решении задач;		Активность на занятиях Выполнение домашних заданий Контрольная работа
Применение векторов и координат к решению задач		входящие в содержание дисциплины; - основные приемы и способы решения задач и доказательства теорем	 анализировать математический текст, строить модели, соответствующие поставленной задаче; анализировать и оценивать полученные результаты, доказывать правильность своих выводов; выбирать и реализовывать наиболее рациональный метод решения геометрической задачи; применять информационнокоммуникационные технологии при изучении геометрического материала школьного курса математики 		

Шкала оценивания в рамках балльно-рейтинговой системы: «неудовлетворительно» – 60 баллов и менее; «удовлетворительно» – 61-80 баллов; «хорошо» – 81-90 баллов; «отлично» – 91-100 баллов

4. Критерии и шкалы оценивания

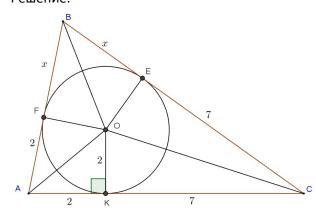
1. Активность на занятиях

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за активность на занятии	0	1	1,5	2

2. Выполнение домашних заданий

Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполненное домашнее задание	0,2	1	1,5	2

3. Выполнение контрольной работы


Процент правильных ответов	До 60	61-80	81-90	91-100
Количество баллов за выполнение контрольной работы	5	10	15	40

5. Типовые контрольные задания и методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

5.1. Типовое домашнее задание

Пример 1. В треугольник вписана окружность радиуса 2. Одна из сторон треугольника делится точкой касания на отрезки длиной 7 и 2. Найдите радиус окружности, описанной около треугольника.

Решение.

$$2R_{onuc.} = \frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$
 – теорема синусов.

Отсюда
$$R_{onuc.} = \frac{a}{2\sin\alpha}$$

Пусть точка О — центр вписанной в треугольник окружности. OK — радиус вписанной окружности. Тогда $OK \perp AC$.

$$OK = 2$$
 (по условию).

Пусть сторона AC делится точкой касания K на отрезки 7 и 2.

Рассмотрим ΔAOK – прямоугольный.

В нем катеты равны AK = OK = 2, следовательно он равнобедренный. Тогда углы при стороне AO равны, т.е. $\angle OAK = \angle AOK = 45^{\circ}$. AO — биссектриса треугольника $\triangle ABC$ (центр вписанной окружности находится в точке пересечения биссектрис треугольника). Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности, т.е.

$$CK = CE = 7$$
, $BF = BE = x$,

$$AK = AF = 2$$
 и $\angle OAK = \angle OAF = 45^{\circ}$. Таким образом, $\angle FAK = 90^{\circ}$.

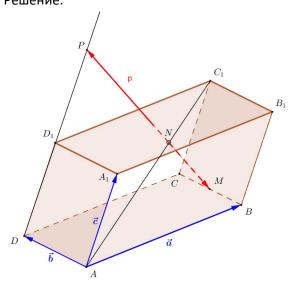
Следовательно, $\triangle ABC$ – прямоугольный, $\angle BAC = 90^{\circ}$.

Центр описанной около прямоугольного треугольника окружности находится на середине гипотенузы. Значит, достаточно найти длину гипотенузы BC.

Сторона BC делится точкой касания E на отрезки 7 и $^{\chi}$.

Тогда стороны треугольника ABC: AB = 2 + x, AC = 9, BC = 7 + x.

По теореме Пифагора: $(2+x)^2 + 9^2 = (7+x)^2$


$$4+4x+x^2+81=49+14x+x^2$$

$$10x = 85 - 49$$
, $10x = 36$, $x = 3,6$.

Значит,
$$BC = 7 + 3,6 = 10,6$$
, а $R_{onuc.} = \frac{BC}{2} = \frac{10,6}{2} = 5,3$.

Other: $R_{onuc} = 5,3$.

Пример 2. В параллелепипеде через середину M ребра BC проведена прямая, пересекающая прямые AC_1 и DD_1 соответственно в точках N и P. Найти отношение MN:NP. Решение.

Введем обозначения: три некомпланарных вектора \overline{AB} , \overline{AD} и $\overline{AA}_{||}$ обозначим соответственно \overline{a} , \overline{b} и \overline{c} . Остальные векторы разложим по этим векторам.

$$\overline{AC_1} = \overline{a} + \overline{b} + \overline{c}$$
.

Точка N лежит на прямой AC_1 , поэтому вектор $\overline{AC_1}$, т.е. $\overline{NA} = x\overline{AC_1}$. Значит, $\overline{NA} = x(\overline{a} + \overline{b} + \overline{c})$.

 \overline{NA} , \overline{AB} и \overline{BM} , т.е. $\overline{NM} = \overline{NA} + \overline{AB} + \overline{BM}$.

Подставим сюда разложение вектора \overline{NA} ,

учитывая, что $\overline{AB}=\overline{a}, \overline{MB}=\frac{1}{2}\overline{BC}=\frac{1}{2}\overline{AD}=\frac{1}{2}\overline{b}$.

Получим $\overline{NM}=x\Big(\overline{a}+\overline{b}+\overline{c}\Big)+\overline{a}+\frac{1}{2}\overline{b}$, тогда $\overline{NM}=x\overline{a}+x\overline{b}+x\overline{c}+\overline{a}+\frac{1}{2}\overline{b}$

$$\overline{NM} = (x+1)\overline{a} + \left(x+\frac{1}{2}\right)\overline{b} + x\overline{c}.$$

Вектор \overline{DP} коллинеарен вектору $\overline{DD_1}$, а $\overline{DD_1} = \overline{c}$, поэтому $\overline{DP} = y\overline{c}$.

По правилу многоугольника: $\overline{NP} = \overline{NA} + \overline{AD} + \overline{DP}$ или $\overline{NP} = x\left(\overline{a} + \overline{b} + \overline{c}\right) + \overline{b} + y\overline{c}$.

$$\overline{NP} = x\overline{a} + x\overline{b} + x\overline{c} + \overline{b} + y\overline{c}$$
, $\overline{NP} = x\overline{a} + (x+1)\overline{b} + (x+y)\overline{c}$.

Так как векторы \overline{NM} и \overline{NP} коллинеарны, то выполняется равенство $\overline{NM}=\lambda\,\overline{NP}$, где $\lambda\neq 0$. Подставим сюда разложения векторов \overline{NM} и \overline{NP} , получим:

$$(x+1)\overline{a} + \left(x+\frac{1}{2}\right)\overline{b} + x\overline{c} = \lambda x\overline{a} + \lambda (x+1)\overline{b} + \lambda (x+y)\overline{c}.$$

Это равенство в силу единственности разложения равносильно системе трех уравнений:

$$\begin{cases} x+1 = \lambda x \\ x+\frac{1}{2} = \lambda (x+1); \\ x = \lambda (x+y) \end{cases} \begin{cases} x+1 = \lambda x \\ x+\frac{1}{2} = \lambda x+\lambda; \\ x = \lambda x+\lambda y \end{cases} \begin{cases} x+1 = \lambda x \\ x+\frac{1}{2} = x+1+\lambda; \\ x = \lambda x+\lambda y \end{cases} \begin{cases} \lambda = -\frac{1}{2} \\ x = -\frac{2}{3} \\ y = 2 \end{cases}$$

Таким образом, $\overline{NM} = -\frac{1}{2}\,\overline{NP}$, а $\left|\overline{NM}\right| = \frac{1}{2}\left|\overline{NP}\right|$, отсюда $\frac{MN}{NP} = \frac{1}{2}$.

Ответ: MN : NP = 1 : 2.

5.2. Типовая контрольная работа

- 1. Углы при одном из оснований трапеции равны 85° и 5° , а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 1. Найдите основания трапеции.
- 2. Высота правильной четырехугольной пирамиды составляет с боковой гранью угол 30° . Через сторону основания пирамиды проведена плоскость, перпендикулярная противолежащей грани. Найти отношение объемов многогранников, полученных при пересечении пирамиды этой плоскостью.
- 3. В правильной треугольной призме AB = 4 см, $AA_1 = 3$ см. Найти расстояние от вершины C_1 до плоскости ADB, где D середина ребра A_1C_1 .

- 4. В треугольнике LMN дано: $LLNM = 90^{\circ}$, $LMLN = 30^{\circ}$. На перпендикуляре к отрезку LN, проходящем в пространстве через точку L, взята такая точка F, что LF = MN. Полуплоскости, которым принадлежат треугольники LMN и LNF, образуют двугранный угол, равный 60° . Найти острый угол между прямыми LM и NF.
- 5. Найти радиус сферы, описанной около правильного тетраэдра, две вершины которого лежат на диагонали куба с ребром 2, а две другие на не пересекающей эту диагональ куба диагонали его грани.

Ключ

№ вопроса	1	2	3	4	5
Правильный ответ	10 и 12	$\frac{3}{5}$	$\frac{3}{2}$	$\arccos \frac{5}{8}$	$\frac{\sqrt{2}}{2}$

5.3. Примерный перечень вопросов к зачету

- 1. Основные метрические соотношения между элементами треугольника.
- 2. Метод последовательного вычисления величин.
- 3. Метод поиска решения «от искомого».
- 4. Метод введения неизвестных.
- 5. Свойство медиан треугольника.
- 6. Длина медианы треугольника.
- 7. Свойство биссектрисы треугольника.
- 8. Применение подобия к решению задач.
- 9. Вписанные и описанные окружности.
- 10. Координаты вектора. Сумма и разность векторов. Угол между векторами.
- 11. Понятие коллинеарности, компланарности и ортогональности векторов.
- 12. Координатный и векторный методы.
- 13. Метод вспомогательных элементов и фигур.
- 14. Построение сечений многогранников
- 15. Метод геометрического места точек.
- 16. Метод площадей и объемов.
- 17. Перпендикулярность векторов.
- 18. Уравнение плоскости.
- 19. Расстояние от точки до плоскости.
- 20. Задачи на нахождение углов и расстояний между прямыми и плоскостями.